
AD-A252 953 DTIChull El lii El NI lIE gig liii 1111llil
ELCTE
JUL 2 0 1992

Using the ISIS Resource Manager for
Distributed, Fault-Tolerant Computing*

Timothy Clark
Kenneth Birman

TR 92-1289
June 1992

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency

(DoD) under DARPA/NASA subcontract NAG 2-593 administered by the NASA Ames
Research Center and by grants from GTE, IBM, and Siemens, Inc. The views,
opinions, and findings contained in this report are those of the authors and should not
be construed as an official Department of Defense position, policy or decision.

92-18975

R DForm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubi ve FOMW bw n tW this c0fledin of Idt~lhofi is egknMed t avetae I how Par response. indtuding the intan for revy s iftiduct . Seelli*g arxisl" data samsi. gathering and

(naintaini" the data needed. and 00"15011 and .t W it ew P 001Cla fMeln. Send CoMfi 9411 Fegmd141 this bur den 6s9th t Of My OW 0 iM s OOf t Oml n.

Induolg suQgesta Im reducng this burden. to waShIrton HeedQuarlers Senies. Oectorate fot Wdctwtmon Operaions Nd Reperts. 1215 JetIeon Davi Ig!way. Sule 1204. rAtin.

VA 222024302. And to the Office at Management anW Budgt. Pm~etork Redudlton Projec (0704-0188). Wmhington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I June 1992 Special Technical

4. TITLE AND SUB1TLE 5. FUNDING NUMBERS

Using the ISIS Resource Manager for Distributed,
Fault-Tolerant Computing NAG 2-593

6. AUTHOR(S)

Timothy Clark and Kenneth Birman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
Kenneth Birman, Associate Professor REPORTNUMBER

Department of Computer Science 92-1289
Cornell University

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

DARPA/ISTO

II. SUPPLEMENTARY NOTES

I.. DISTRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
A.f)17,.vrD FOR PUBLIC RELEASE.

-iiflION UNLIMITED -

13. ABSTRACT (Maximum 200 words)

Please see page 1.

14. SUBJECT TERMS 15. NUMBER OF PAGES

14

16. PRICE CODE

17. SECURITY CLASSIFICATION IS. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-01.2go.SWO Stadr Fem Mi (NOw. 2-s

Pisesthd Wf tNNMel ON. Mtl
:Mi-iw

Ac 8e"
N " .4','.-

DTIC QUALiHi IirCTED 2 _t_. .

Availability Ccdes

Using the ISIS Resource Manager for "t 9pecial

Distributed, Fault-Tolerant Computing-'\

Timothy Clark
Kenneth Birman

Department of Computer Science, Cornell University

June 23, 1992

Abstract

Under current versions of the UNIXm operating system, it is dif-
ficult to take advantage of the massiva computing power of idle or
lightly-loaded workstations on a network. This paper introduces the
ISIS Resource Manager, a distributed, fault-tolerant application capa-
ble of recapturing this processing power, as well as providing a trans-
parent interface to network computing resources.

1 Introduction

Networks of inexpensive UNIX-based workstations offer great promise as
computational engines for a wide range of coarsely parallel applications. Un-
fortunately, under contemporary versions of the UNIX operating system.
effective utilization of multiple machines can be clumsy at the shell level.
and impractical at a program level.

*This work was supported by the Defense Advanced Research Projects Agency (DoD)
under DARPA/NASA subcontract NAG2-593 administered by the NASA Ames Research
Center, and by grants from GTE, IBM, and Siemens, Inc. The views, opinions, and
findings contained in this report are those of the authors and should not be construed as
an official Department of Defense position, policy, or decision.

In this paper, a utility that solves this problem is described. The ISIS
resource manager gathers collections of heterogenous, idle workstations into
a processor pool onto which tasks are scheduled, and deals with dynamic
events such as crashes, the need to release a workstation when its owner
resumes active use, and the introduction of new types of machines and soft-
ware services while the system is running. The solution is ca.,y to use. has
been ported to a wide variety of UNIX platforms, and offers multiple in-
terfaces oriented towards different classes of users. One of these mimics a
traditional batch queueing system, while others are more dynamic and suit-
able for use in explicitly distributed software systems that exploit program
and data replication to increase performance or fault-tolerance.

The resource manager has been applied to problems in computer aided
design, simulation, scientific computing, distributed software development,
graphics and many other areas. These uses include existing applications
that must be executed without modification as well as new software that
benefits by making explicit use of the resource manager at the program level.

This paper is structured into three sections: the first section discusses
the growing importance of high-speed workstation networks and the need for
network management utilities; the second section discusses how advances in
software technology have made it possible to easily construct a distributed.
fault-tolerant application to meet this need; and the final section describes
the architecture of the resource manager, as an example of this class of ap-
plication.

2 The Growing Importance of Networks and
Coarsely Parallel Software

As networks have become increasingly prevalent, more and more users are
encountering problems that can benefit from being run on multiple machines
in parallel. As one example, VLSI circuit simulation typically involves many
trial runs of a circuit using different combinations of inputs. Here, a single
program is run many times with different inputs. Such a problem is ideal for
solution using a network of conventional high-speed workstations. Indeed,
since the communication requirements of such an application are minimal, a
closely coupled multi-processor is not needed, and the workstation approach

2

will be considerably more efficient than batch style execution on a shared
supercomputer. This trend has created a need for automatic network resource
management tools.

Unfortunately, under contemporary versions of the UNIX operating sys-
tem, effective utilization of collections of machines can be awkward. The
available tools include programs such as ruptime, rwho, rsh and rlogin.
Using these, it is difficult to determine which machines are the most appro-
priate ones to use, and there is no network-wide scheduling mechanism to
enforce fairness. There are no tools to check the status of active programs
on the network, or to prioritize the use of certain machines in favor of cer-
tain sets of users. If an application may run for hours, days, or even weeks,
and must be automatically monitored and restarted in the event of failure,
there may be no human in the loop at the time a network scheduling activity
is required. UNIX provides little help in these areas, forcing users to cob-
ble together approximate solutions using mail to report completion status,
periodically running ps to check on job activity, and so forth.

The resource manager solves these problems by providing an easy to use,
portable, fault-tolerant mechanism for job management and monitoring in a
distributed environment.

3 Advances in Software Technology Allow
for Robust Applications

Much research has been done on the prospect of exploiting the power of
distributed networks of workstations. However, most research provides only
several pieces of the puzzle, not the whole solution. Shared memory models.
reliable broadcast protocols, remote procedure calls, etc.. all contribute to
the ability to distribute an application across the network. However, the de-
velopment of the ISIS Distributed Toolkit technology addresses the broader,
more complete picture.

Basically, ISIS is a subroutine package that employs protocols built over
UDP to ensure that messages will be delivered reliably and in order; it adds
headers to messages and delays messages on arrival (if necessary) to accom-
plish this. This reliable, consistent ordering of messages is called "Virtual
Synchrony". Events such as multicast and detection of failures are atomic in

3

a virtually synchronous setting; events appear to happen one-at-a-time and
in a consistent order at all sites.

ISIS provides a rich set of distributed programming techniques based on
these protocols. Central to ISIS is the notion of a process group. These
groups are a lightweight programming construct: a single process can belong
to arbitrarily many groups, and there is minimal overhead in being a member
of a group. A process can dynamically join and leave groups, and groups can
span multiple machines. ISIS provides a state transfer utility and severi
multicast and unicast communication primitives, with differing levels of or-
dering guarantees, for point-to-point and group communication. A multicast
can be directed to all members of a group, and zero or more will respond.
depending on the needs of the particular application.

Although the overhead of using a package such as ISIS may negatively im-
pact some applications such as real-time systems, its effect on an application
such as the resource manager is negligible. In the resource manager, the time
to process a job request is heavily biased by the fork/exec system calls. The
communication and ordering overhead of ISIS represents only about 20ms of
the 450ms average response time for a job request on a SUN sparcstation 1.

All three pieces of the resource manager system are built upon the ISIS
Distributed Toolkit, and use causal and atomic multicast, process group
communication, data replication and failure detection. The use of ISIS re-
lieved much of the difficulty associated with failures, synchronization, con-
sistency and network communications. Taken together with the wide range
of tools represented in the toolkit, this approach led to major improvements
in the robustness of the system. Unfortunately, space limitations on this
paper preclude a more detailed discussion of the ISIS protocols and con-
cepts. More information on ISIS, and performance data, can be found in
[BJ87a, BJ87b, BJKS88].

4 Architecture of the Resource Manager

The resource manager system consists of three parts: the resource manager
server; the resource manager stubs; and the various user-interfaces. The
resource manager server normally runs on 2 to 5 machines, while the stub
program runs on all machines which are to be included in the resource pool.
The user-interface programs run on end-users' workstations. See Figure 1.

4

NMGR PROCESS GROUP
USER DNTERFACE

REQUESTU

ABCAST

" JOB RE.QUEST ABCAST

ABCAST REPLY (OPTIONAL) . '-'--- -.

FORK/EXE C

CHID REGISTER ABCAST

CHtILD TERM ABCAST

/ SIGCHILD

Figure 1: Architecture of the ISIS Resouce Manager

4.1 The Resource Manager Server

The resource manager server manages a customizable database of registered
machines and services. Normally several copies of the resource manager
server are instantiated, forming a process group with fully replicated data
for fault-tolerance. All communication between the remote stubs, the re-
source manager server process group, and the user-interfaces use the ISIS
reliable multicast protocols, cbcast and abcast. Using the ordering guaran-
tees of these protocols, every event is seen in the same order at each server.
so if a server or stub crash, each remaining server has identical, consistent
information upon which to act.

Each resource manager server executes the same code in parallel and
responds to incoming events by using the ISIS lightweight tasking subsystem
to fork off tasks as event handlers. The event types recognized by the resource
manager include:

" resource manager process group join or leave event

" resource manager stub join or leave event

" resource manager stub load update message

* user-interface request message

" API request message

* child (job) registration message

* child (job) termination message

Each resource manager server is sensitive to server and stub join/leave
events. Upon receiving a server join request, the oldest member of the server
process group initiates a state transfer to the joining server. All events are
briefly suspended while the transfer takes place, insuring that all database
information is received by the joining member in a consistent manner. Upon
a server leave or failure event, the surviving members of the server group
reconfigure, and any stubs connected through the failed server reconnect to
a surviving server.

The resource manager implements user-definable, priority-based queues.
which mimic traditional batch queueing mechanisms, but which provide the

6

fault-tolerant execution of jobs. Upon a stub join event, the servers signal
the batch queueing mechanism that a new machine has joined the resource
pool, and search for any job which matches the new machine's specifications.
Upon a stub leave event, the servers search their database for any jobs which
had been running on that stub. If jobs are found, they attempt to restart
them on another machine before deleting the failed stub's information from
their database. The jobs from the failed stub will either be started on a
different stub, or will be placed in a queue until a matching stub machine
becomes available.

When a job request is received, a newly created task will add the job-
related information to the resource manager's database and attempt to find
a machine on which to execute the job. A pattern matching algorithm is
run in combination with a simple, but effective load-balancing algorithm to
select a machine on which to run a submitted job request. If a matching stub
machine is found, a message is sent to the stub containing all the information
necessary to execute the job. If no matching machine is found. the job is
placed in a batch queue until a matching machine becomes available.

Each stub is responsible for sending in a CHILD-REGISTER and
CHILD-TERM message for each job it starts. The CHILD-REGISTER
message contains the remote stub's machine name and the new job's pro-
cess id and informs the server that the job was started successfully. The
CHILD- TERM message returns the job's exit status and signals the normal
or abnormal completion of the job. Upon receiving a CHILD-TERM mes-
sage, the resource manager may signal the batch queueing mechanism that
the stub is available to run another job. Depending on the job specifica-
tions and the exit status, the server may take other actions as well, such as
automatically restarting the job or sending mail to the initiator of the job.

All machine and job related information is stored in a replicated database
by each server and is available for status queries via one of the user-interface
programs.

Below is an example of a resource manager database for a small network
which specifies key words, machine types, individuai machines, a batch queue.
and an administrator's login id (for email notification upon failure events).

key fpu /* Has hardware fpu */
key mathlab /* Has mathlab license *1
key xfpu /* Has high speed FPU support */

7

key sparc /* Sparc architecture */
key mc68020 /* MC68020 architecture */

key mips /* mips architecture */
mtype sun3 = {mc68020,fpu, mem=8, rating=1.0}
mtype sparcl+ = {sparc, mem=16, rating=8.0)
mtype sparc2 = {sparc, fpu, xfpu, mem=t6, rating=t6.0}
mtype Mips = {mips, fpu, xfpu, memf6, ratingl16.0}
mtype hpux = {hpux, fpu, xfpu, mem16, rating-16.0}

machine flute = sparcl+
machine viola = {mips, mathlab,mounts-{/usr/fsys/fsl,/usr/fsys/fs2}}
machine bongo = {sparcl+,mem=32,mounts-{/usr/fsys/fsl}}

add.q NEWQ = {nq-axsize120,nq.maxactivez100,nq-axrun=200,\

nq-maxmem=20}
adminid tclark

The resource manager recognizes many options within job specifications
for services such as:

" sending mail upon completion of a job

" restricting the number of jobs simultaneously running on a machine

" automatically restarting reliable server-based applications

* scheduling cron jobs or sequentially-related jobs

" requesting specific machines for execution

" copying files into and/or out of the execution directory

" arbitrary, user-defined attributes used to match specifically- equipped
stub machines to job requests, eg. machines licensed to run specific
software

8

4.2 The Resource Manager Stub

The resource manger stub is run on each workstation which wishes to partici-
pate in the resource pool. When this program is instantiated, it first reads in
its machine-specific information from an initialization file and then registers
with the resource manager server, communicating its host name. machine
type. current load. and mounted file systems. Once registered. its only ac-
tivity is to send in its current load information at regular intervals and await
incoming job requests from the server. In this state, the cpu overhead of
running the stub on a workstation is insignificant.

When a job request is received by a stub, the message is unpacked, retriev-
ing the binary name to be run, the arguments, and the environment variables.
It will then use the UNIX fork/exec system calls to execute the requested bi-
nary. The fork/exec system calls represent the major portion of the system's
performance, the actual communication of the job request taking approxi-
mately 20 ms. After the fork/exec, the stub sends in a CHILD. REGISTER
message to the resource manager group, containing the process id of the
spawned job. The UNIX wait() system call is used to reap terminated child
processes and their associated exit status, and this information is passed on
to the resource manager server(s) via a CHILD-TERM message.

The stub program is highly configurable. Machine-specific information
is associated with the stub through the initialization file. This file contains
attributes such as the machine type, the amount of physical memory, the
64rating" of its processor (in user-definable units), the number of processors
available (for multi-processors), and other user-definable attributes such as
software licenses or special hardware options (eg. floating point processors).

The stub's command line arguments allow the specification of the follow-
ing behavioral options:

* go to sleep for a specified time interval if console login takes place

* go to sleep if keyboard/mouse activity occurs on the host console

* go to sleep if the host cpu load goes beyond a specified threshold level

* the ability to "plug-in" a user-defined load monitor routine

e the specification of the execution directory where job requests will be
run (the default is /tmp/nmgr)

9

4.3 The Resource Manager User-Interface Programs

The resource manager has three types of user-interfaces: a shell-level com-
mand line interface; an X Windows/Motif graphical user-interface: and an
applications programmer interface (API). The typical response time for a
completed job request (via netexec or xnmgr) is on the order of 1/2 second.

The Shell-Level Interface

A shell-level interface has been implemented using the names netexec.
netkill, netstatus, reserve and unreserve - all links to the same
binary. These interfaces allow the user to start, monitor, and kill jobs.
as well as the ability to "reserve" machines for future use and "unre-
serve" them, as desired, in a transparent manner.

Example 1:

net-exec "binary={sparcf/usr/u/fred/test},min=3,mem>10, \
send-mail}"

This job request will start 3 copies of the binary /usr/u/fred/test on
sparc-based workstations with physical memory greater than 10 NIB.
and will send email to the user upon job completion.

Example 2:

netexec "test 1={binary={sparc=/usr/u/f red/sparc/test,
mips=/usr/u/fred/mips/test}, args={4} ,\
min=4, mounts=/usr/u/fred/data}"

This job specification will execute four copies of the binaries
/usr/u/fred/sparc/test or /usr/u/fred/mips/test with the argu-
ment "4" on sparc or mips-based workstations that have the
/usr/u/fred/data file system mounted. The job will be run under the
job name "testl", which can be used by the ne'tkill program to kill
the job(s) if so desired.

10

Example 3:

netstatus -j

will output:

Job Name Binary Name Where
testl.tclark /usr/u/fred/sparc/test 2lute.cs.cornell.edu

test 1.tclark /usr/u/fred/mips/test viola.cs.cornell.edu
testl.tclark /usr/u/fred/sparc/test 1 instances queued
testl.tclark /usr/u/fred/mips/test 1 instances queued

XNMGR - the X Windows/Motif Graphical User-Interface

The graphical interface, based on the Motif widget set, is called xnmgr.
This interface, using popup menus, push buttons, sliders and text en-
try widgets, provides full functionality access to the resource manager,
including the management of jobs (start, suspend, restart, kill), the
creation of batch queues, and more detailed status information. See
Figure 2 for a depiction of the Job Submission screen.

The Application Programmer Interface (API)

An API was added to the resource manager to provide the ability to
communicate at the program level. The API provides an entry point
for generic network manager commands, such as adding machine or
service types or making job or status requests.

1

xnmgr

File Status Submissions Utilities

Submit Service Form Enter appropriate information, then Press Submit button or Cancel to abort.

Path/Binar "/sr/u/isi/bin/tet Mounts I I I

Number of Machines 3 I Envirorment IDl pL Y=flut I

Copy In File(s) IAgs 14,

Copy Out File(s) (j J Machine Name(s) i m
Symbolic Name jobl Other Attributes

0 ISIS APPLICATION C FPU NEEDED E3 AUTO RESTART E LEAVE COPIED FILES 3 UNIQUE MACHINES ONLY a MAIL
2 12 2 Schedle Job? S elect QuuE I I I I I

Imosed Load Factor Required Memr Size of Binary

binariesz{sparc=/uwr/u/iis/bin/test,i3,smbnamejob,orw--<DISPLAYflute")

Figure 2: XNMGR Job Submission Screen

5 Conclusions

The evolution of computing networks has moved through a series of stages.
In the 1980's, workstations were relatively new on the scene and represented
a huge amount of computing power with respect to time-shared processors.
Applications needing still more power generally turned to mainframes, spe-
cial purpose mini-supercomputers and supercomputers. It is only recently
that networks have become so common and workstations so fast that the
idle processing power of a typical network routinely exceeds the processing
capacity of mid- range supercomputing systems. Indeed, within a few years,
the aggregate capacity of a network of high-end workstations will outperform
all but the fastest supercomputers. Utilities like the ISIS resource manager
place this huge computational resource at the disposal of non-expert UNIX
programmers, permitting a style of cooperation and sharing that would pre-
viously have been difficult and impractical. Moreover, the resource manager
can play a valuable role in applications that require high reliability and fault-

12

tolerance, or wish to exploit parallelism for improved response time.
The resource manager is also interesting as an illustration of how new

technology, such as the ISIS programming environment, can provide the nec-
essary tools to allow the relatively easy development of a reliable, distributed
application. Using ISIS permits one to focus on the functionality of the
subsystem rather than the intricate and subtle problems raised by network
protocols and fault-tolerance.

Looking to the future, it seems reasonable to predict that a new wave of
high reliability, easily employed distributcd programming tools will transform
the UNIX networks of the 90's into much more flexible and highly integrated
distributed computing environments than are presently available.

References

[BJ87a] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual
synchrony in distributed systems. In Proceedings of the Eleventh
A CM Symposium on Operating Systems Principles, pages 123-138,
Austin, Texas, November 1987. ACM SIGOPS.

[BJ87b] Kenneth P. Birman and Thomas A. Joseph. Reliable communica-
tion in the presence of failures. ACM Transactions on Computer
Systems, 5(1):47-76, February 1987.

[BJKS88] Kenneth P. Birman, Thomas A. Joseph, Kenneth Kane, and Frank
Schmuck. ISIS - A Distributed Programming Environment User's
Guide and Reference Manual. Department of Computer Science,
Cornell University, first edition, March 1988.

13

